

ISOFACE[™]

ISO11813T

Isolated 8 Channel Digital Input with IEC61131-2 Type 1/2/3 Characteristics

Preliminary Data Sheet

Revision 1.0, 2011-03-30

Industrial & Multimarket

Edition 2011-03-30

Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History: 2011-03-30, V1.0

Previous Version:					
Page	Subjects (major changes since last revision)				
	Preliminary Datasheet				

1	Pin Configuration and Functionality	PDS-8
1.1	Pin Configuration	PDS-8
1.2	Pin Functionality	
1.2.1	Pins of Sensor Interface	
1.2.2	Pins of Serial and Parallel logic Interface F	PDS-11
2	Blockdiagram	PDS-13
3	Functional Description	PDS-14
3.1	Introduction F	PDS-14
3.2	Power Supply F	PDS-14
3.2.1	Voltage Limits on VBB F	PDS-15
3.2.2	External Supply	PDS-16
3.2.3	DC/DC Supply	PDS-17
3.3	Internal Oscillator	PDS-20
3.4	Sensor Input	PDS-21
3.4.1	Input Type Select	PDS-21
3.4.2	Wire Break Detection	PDS-23
3.5	Common Error Output	PDS-24
3.6	Programmable Digital Input Filter	PDS-26
3.7	Parallel Interface Mode F	PDS-27
3.8	Serial Interface Mode	PDS-29
3.8.1	SPI Modes F	PDS-30
3.8.2	Architecture of CRC-Engines F	PDS-34
3.9	SYNC Operation F	PDS-34
3.9 4	SYNC Operation F Standard Compliance F	
		PDS-35
4	Standard Compliance	PDS-35 PDS-37
4 5	Standard Compliance F Electrical Characteristics F	PDS-35 PDS-37 PDS-37
4 5 5.1	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F	PDS-35 PDS-37 PDS-37 PDS-38
4 5 5.1 5.2	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40
4 5.1 5.2 5.3	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40 PDS-42
4 5 5.1 5.2 5.3 5.4	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46
4 5 5.1 5.2 5.3 5.4 6	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46
4 5 5.1 5.2 5.3 5.4 6 6.1	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F	PDS-35 PDS-37 PDS-37 PDS-40 PDS-42 PDS-42 PDS-46 PDS-46 PDS-47
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F Presentation of the Registers F	PDS-35 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F Presentation of the Registers F Sensor Registers F	PDS-35 PDS-37 PDS-37 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2	Standard ComplianceFElectrical CharacteristicsFAbsolute Maximum RatingsFOperating Conditions and Power SupplyFElectrical Characteristics Input SideFElectrical Characteristics Microcontroller InterfaceFRegisters of Microcontroller-Interface-ChipFµController Chip Registers OverviewFPresentation of the RegistersFSensor RegistersFStatus RegistersFConfiguration RegistersF	PDS-35 PDS-37 PDS-37 PDS-40 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-48
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F Presentation of the Registers F Sensor Registers F Status Registers F	PDS-35 PDS-37 PDS-37 PDS-40 PDS-42 PDS-46 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-48 PDS-49
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3	Standard ComplianceFElectrical CharacteristicsFAbsolute Maximum RatingsFOperating Conditions and Power SupplyFElectrical Characteristics Input SideFElectrical Characteristics Microcontroller InterfaceFRegisters of Microcontroller-Interface-ChipFµController Chip RegistersFSensor RegistersFStatus RegistersFStatus RegistersFµController RegistersFUperation RegistersFStatus RegistersFStatus RegistersFUperation RegistersFUperation RegistersFStatus RegistersFStatus RegistersFUperation RegistersFStatus RegistersF <td>PDS-35 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-48 PDS-49 PDS-49</td>	PDS-35 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-48 PDS-49 PDS-49
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1	Standard ComplianceFElectrical CharacteristicsFAbsolute Maximum RatingsFOperating Conditions and Power SupplyFElectrical Characteristics Input SideFElectrical Characteristics Microcontroller InterfaceFRegisters of Microcontroller-Interface-ChipFµController Chip Registers OverviewFPresentation of the RegistersFSensor RegistersFStatus RegistersFConfiguration RegistersFµController Registers DescriptionFCollective Diagnostics RegisterF	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-49 PDS-49 PDS-49
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F Presentation of the Registers F Status Registers F Status Registers F UController Registers Description F Collective Diagnostics Register F Input Channel Data Register F	PDS-35 PDS-37 PDS-37 PDS-40 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-49 PDS-49 PDS-49 PDS-49 PDS-49
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3	Standard ComplianceFElectrical CharacteristicsFAbsolute Maximum RatingsFOperating Conditions and Power SupplyFElectrical Characteristics Input SideFElectrical Characteristics Microcontroller InterfaceFRegisters of Microcontroller-Interface-ChipFµController Chip Registers OverviewFPresentation of the RegistersFSensor RegistersFConfiguration RegistersFµController Registers DescriptionFCollective Diagnostics RegisterFInput Channel Data RegisterFGlobal Error RegisterF	PDS-35 PDS-37 PDS-37 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-49 PDS-49 PDS-49 PDS-50 PDS-51
4 5 5.1 5.2 5.3 5.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3.1 6.3.2 6.3.3 6.3.4	Standard Compliance F Electrical Characteristics F Absolute Maximum Ratings F Operating Conditions and Power Supply F Electrical Characteristics Input Side F Electrical Characteristics Microcontroller Interface F Registers of Microcontroller-Interface-Chip F µController Chip Registers Overview F Presentation of the Registers F Sensor Registers F Configuration Registers F µController Registers Description F Collective Diagnostics Register F Input Channel Data Register F Global Error Register F Filter Time of Channel 0-7 Register F	PDS-35 PDS-37 PDS-37 PDS-38 PDS-40 PDS-42 PDS-46 PDS-46 PDS-47 PDS-47 PDS-47 PDS-47 PDS-49 PDS-49 PDS-49 PDS-50 PDS-51 PDS-52

Isolated 8 Channel Digital Input with IEC61131-2 Type 1/2/3 Characteristics

Product Highlights

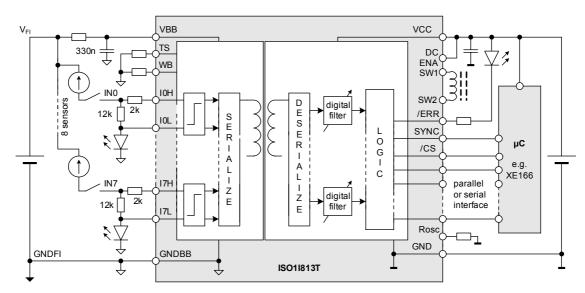
- Minimization of power dissipation due to constant current characteristic
- Status LED output for each input
- Digital averaging of the input signals to suppress interference pulses
- Isolation between Input and Output using Coreless
 Transformer Technology

Features

- Complete system integration (digital sensor or switch input, galvanic isolation and intelligent micro-controller or bus-ASIC interface
- 8-channel input according to IEC61131-2 (Type 1/2/3)
- Integrated galvanic isolation 500VAC (EN60664-1, UL508)
- 5/3.3V SPI and parallel micro-controller interface
- Adjustable deglitching filters
- Up to 500 kHz sampling frequency
- Wire-break detection
- Vbb under-voltage detection
- Package: TSSOP 8 x 12.5 mm

Typical Application

Programmable Logic Controllers(PLC) Industrial PC


General Control Equipment

Description

The ISO1I813T is an electrically isolated 8 bit data input interface in TSSOP-48 package.

This part is used to detect the signal states of eight independent input lines according to IEC61131-2 Type 1/2/3 (e.g. two-wire proximity switches) with a common ground (GNDFI). For operating sensors of type 1/2/3 in accordance with IEC61131-2, it is necessary for the device to be wired with resistors R_V and R_{FXT} (it is recommended to use resistors with an accuracy of 2%, in any case < 5% - is mandatory, temperaturecoefficients < 200ppm are allowed). The figure below shows the typical application circuit for type 1/3. An 8 bit parallel µC compatible interface allows to connect the IC directly to a µC system. The input interface supports also a direct control mode and is designed to operate with 3.3/5V CMOS compatible levels. The data transfer from input to output side is realized by the integrated Coreless Transformer Technology.

Typical Application for Sensor of Type 1/3

Pin Configuration and Functionality

1 Pin Configuration and Functionality

The pin configuration slightly differs for the parallel or the serial interfaces.

1.1 Pin Configuration

The ordering, type and functions of the IC pins are listed in the Table 1.

Table 1Pin Configuration

Pin	Parallel Ir	nterfa	ce Mod	le	Serial Interface Mode				
	Symbol	Ctrl 1)	Type 2)	Function	Symbol	Ctrl.	Туре	Function	
ASIC	/ Micro-con	troller	Side F	Pins					
1	GND		А	Logic Ground	GND				
2	SEL	I	PD	Serial Parallel Mode Select	SEL				
3	SYNC	I	PU	Freeze Data & Diagnostics	SYNC				
1	Rosc		А	Clock Frequency Adjustment	Rosc				
5	VCC		А	Positive 5/3.3V logic supply	VCC				
3	ERR	0	D, PU	Fault Indication output	ERR				
7	GND		А	Logic Ground	GND				
}	AD0	Ю	PPZ	Data output bit0	SDI	I	PD	SPI Data input	
9	AD1	Ю	PPZ	Data output bit1	SSO	0	PPZ	SPI Status output	
10	AD2	Ю	PPZ	Data output bit2	GND				
11	AD3	Ю	PPZ	Data output bit3	GND				
2	AD4	Ю	PPZ	Data output bit4	CRCERR	0	D, PU	CRC Error output	
3	AD5	Ю	PPZ	Data output bit5	SCLK	I	PD	SPI Shift Clock input	
4	AD6	Ю	PPZ	Data output bit6	SSI	I	PD	SPI Status input	
5	AD7	Ю	PPZ	Data output bit7	SDO	0	PPZ	SPI Data output	
6	CS	I	PU	Chip Select	CS				
17	RD	I	PU	Data Read	n.c.				
8	GND		А	Logic Ground	GND				
9	WR	I	PU	Data Write	MS0	I	PD	SPI Mode Select bit 0	
20	ALE	I	PD	Address Latch Enable	MS1	I	PD	SPI Mode Select bit 1	
21	DC_ENA	I	PD	DC-DC Supply Enable	DC_ENA		·		
22	SW1		А	DC-DC Switch Output 1	SW1				
23	SW2		А	DC-DC Switch Output 2	SW2				
24	GND		А	Logic Ground	GND				
Senso	or Side Pins	6							
25	GNDBB		А	Input Ground	GNDBB				
26	VBB		А	Positive input supply voltage	VBB				
27	IOL		А	Input 0 Low, LED Out	IOL				
28	I0H		А	Input 0 High	10H				
29	I1L		А	Input 1 Low, LED Out	I1L				

Pin Configuration

Table 1

Pin Configuration and Functionality

Pin	Parallel I	ce Moo	le	Serial Interface Mode				
	Symbol	Ctrl 1)	Type 2)	Function	Symbol	Ctrl.	Туре	Function
30	I1H		А	Input 1 High	I1H			
31	GNDBB		А	Input Ground	GNDBB			
32	I2L		А	Input 2 Low, LED Out	I2L			
33	I2H		А	Input 2 High	I2H			
34	I3L		А	Input 3 Low, LED Out	I3L			
35	I3H		А	Input 3 High	I3H			
36	TS		А	Sensor Type 1/2/3 Select	TS			
37	GNDBB		А	Input Ground	GNDBB			
38	WB		А	Wire Break Select	WB			
39	I4L		А	Input 4 Low, LED Out	I4L			
0	I4H		А	Input 4 High	I4H			
11	15L		А	Input 5 Low, LED Out	15L			
12	15H		А	Input 5 High	15H			
13	GNDBB		А	Input Ground	GNDBB			
14	16L		А	Input 6 Low, LED Out	I6L			
15	16H		А	Input 6 High	16H			
6	17L		А	Input 7 Low, LED Out	I7L			
17	17H		А	Input 7 High	I7H			
18	GNDBB		А	Input Ground	GNDBB			

1) Direction of the pin: I = input, O = output, IO = Input/Output

2) Type of the pin: A = analog, D = Open-Drain, PU = internal Pull-Up resistor, PD = internal Pull-Down resistor, PPZ = Push-Pull pin with High-Impedance functionality

Pin Configuration and Functionality

		_						
GND	1 () 48	GNDBB		GND	1 O)	48	GNDBB
SEL	2 47	17H		SEL	2		47	17H
SYNC	3 46	17L		SYNC	3		46	17 L
Rosc	4 45	16H		Rosc	4		45	16H
VCC	5 44	16L		VCC	5		44	16L
/ERR	6 43	GNDBB		/ERR	6		43	GNDBB
GND	7 42	15H		GND	7		42	15H
AD0	8 41	15L		SDI	8		41	15L
AD1	9 40	14H		SSO	9		40	14H
AD2	10 39	14L		GND	10		39	14L
AD3	11 38	WB		GND	11		38	WB
AD4	¹² Pinout for parallel ³⁷	GNDBB		CRCERR	12	Pinout for serial	37	GNDBB
AD5	13 Interface 36	TS		SCLK	13	Interface	36	TS
AD6	14 35	I3H		SSI	14		35	13H
AD7	15 34	13L		SDO	15		34	I3L
/CS	16 33	I2H		/CS	16		33	12H
/RD	17 32	12L		nc	17		32	12L
GND	18 31	GNDBB		GND	18		31	GNDBB
/WR	19 30	I1H		MS0	19		30	I1H
ALE	20 29	11L		MS1	20		29	11L
DC_ENA		IOH		DC_ENA			28	IOH
SW1	22 27	IOL		SW1	22		27	IOL
SW2	23 26	VBB		SW2	23		26	VBB
GND	24 25	GNDBB		GND	24		25	GNDBB
		-	n.c. = Not Connected	·				-

1.2 Pin Functionality

1.2.1 Pins of Sensor Interface

VBB (Positive supply 9.6-35V sensor supply)

VBB supplies the sensor input stage.

GNDBB (Ground for VBB domain)

This pin acts as the ground reference for the sensor input stage that is supplied by VBB.

I0H... I7H (Input channel 0 ... 7)

Sensor inputs with current sink characteristic according IEC61131-2 Type 1/2/3 which has been selected by pin TS

I0L... I7L (LED output channel 0 ... 7)

This pin provides the output signal to switch on the LED if the input voltage and current has been detected as "High" according to the selected Sensor Type.

WB (Wire-Break Select)

By connecting a resistor between WB and GNDBB, the level for the Wire-Break detection can be adjusted (refer to **Table 10**). This pin is for static configuration (pin-strapping). The input voltage must not change during operation.

TS (Type Select)

By connecting a resistor between TS and GNDBB the sensor type (Type 1/2/3) can be selected (refer to **Table 10** for corresponding resistor value). This pin is for static configuration (pin-strapping). The input voltage must not change during operation.

Pin Configuration and Functionality

1.2.2 Pins of Serial and Parallel logic Interface

Some pins are common for both interface types, some others are specific for the parallel or serial access.

VCC (Positive 3.3/5V logic supply)

VCC supplies the output interface that is electrically isolated from the sensor input stage. The interface can be supplied with 3.3/5V.

GND (Ground for VCC domain)

This pin acts as the ground reference for the uC-interface that is supplied by VCC.

Rosc (Clock Adjustment)

A high precision resistor has to be connected between Rosc and GND to set the frequency of the sampling clock.

DC_ENA (DC-DC Converter Enable)

When the DC_ENA pin is connected to VCC, the internal DC-DC driver is activated. When DC_ENA is in the state Low, the switches are not driven. The input voltage must not change during operation. This pin has an internal Pull-Down resistor.

SW1, SW2 (DC-DC switch outputs 1/2)

When the DC_ENA pin is connected to VCC, the outputs SW1 and SW2 switch at the clock-frequency determined by the resistor at Rosc to supply the external push-pull converter. The switching frequency can be divided by two by setting the responsible bit in the GLCFG register (see also section 6). Both outputs provide an open drain functionality.

ERR (Error)

The low active ERR signal contains the OR-wired information of the sensor input undervoltage and missing voltage detection, the internal data transmission failure detection unit and the overcurrent fault of the DC-DC-converter. The output pin ERR provides an open drain functionality. During Start Up this pin is pulled to High state. This pin has an internal Pull-Up resistor. In normal operation the signal ERR is high. See Section 3.5 for more details.

SEL (Serial or Parallel Mode Select)

When this pin is in a logic Low state, the IC operates in Parallel Mode. For Serial Mode operation the pin has to be pulled in logic High state. During Start Up the IC is operating in Parallel Mode. This pin has an internal Pull-Down resistor. This pin must not change during operation.

SYNC

When this pin is in a logic High state, the IC operates in continuous mode with the internal sampling clock. In isochronous mode, the internal data and diagnostics registers are synchronized on each falling edge detected at SYNC. In logic low state the internal data and diagnostic registers are not updated. During Start-Up this pin is pulled to high state. This pin has an internal Pull-Up resistor. (see also Section 3.9

CS (Chip Select)

When this pin is in a logic Low state, the IC interface is enabled and data can be transferred. This pin has an internal Pull-Up resistor.

The following pins are provided in the parallel interface mode

AD7:AD0 (AddressData input / output bit7 ... bit0)

The pins AD0 .. AD7 are the bidirectional input / outputs for data write and read. Depending on the state of the ALE, RD, WR pins, register addresses or data can be transferred between the internal registers and e.g. the micro-controller.

RD, WR (Read / Write)

By pulling one of these pins down, a read or write transaction is initiated on the AddressData bus and the data becomes valid. These pins have internal Pull-Up resistors.

Pin Configuration and Functionality

ALE (Address Latch Enable)

The pin ALE is used to select between address (ALE is in a logic High state) or data (ALE is in a logic Low state). When ALE is pulled high, addresses are transferred and latched over the bit AD0 to AD7. During the Low State of ALE all read or write transactions hit the same adress. This pin has an internal Pull-Down resistor.

The following pins are provided in the serial interface mode

MS0, MS1 (Serial Mode Select)

By driving these pins to Logic High or Low the Serial Interface Mode can be selected. These pins have internal Pull-Down resistors. The mode of the Serial Interface can be changed during operation.

SCLK (Serial interface shift clock)

Input data are sampled with the rising edge and output data are updated with the falling edge of this input clock signal. This pin has an internal Pull-Down resistor.

SDI, SSI (Serial interface data/status input)

SDI/SSI data is put into a dedicated FIFO to program the filtering time and mask the Wire-Break diagnostic bits of each channel (SPI Mode 2 and 3) or to program register adresses the contents of which to be read subsequently. This pin has an internal Pull-Down resistor.

SDO, SSO (Serial interface data/status outputs)

SDO provides typically the sensor data bits, SSO provides the sensor diagnostic bits.

CRCERR (CRC Error output)

This pin is in a logic Low state when CRC errors or Shift-Clock errors are detected internally. This pin has an internal Pull-Up resistor.

Blockdiagram

2 Blockdiagram

VCC VBB Rosc SW1 osc UVLO DC/DC UVLO SW2 CLK ΜV υν DC_ENA Wire-WB Break Startup þ Î ζ Selector /ERR TX/RX TX/RX Commo Туре Control Control Error Selector SYNC Validation /CS /WR Ζ DATA DATA Filter 0 Sensor DIAG TIOL DIAG Circuit 0 D DATA DATA Filter 1 Sensor DIAG Е S DIAG Circuit 1 AD7 DATA AD DATA S Е Filter 2 Sensor DIAG U AD: DIAG parallel Circuit 2 R Е Ρ AD4 interface DATA D DATA Filter 3 AD3 Sensor R T A T DIAG DIAG Circuit 3 AD2 Е I DATA AD1 DATA Filter 4 Interface Sensor DIAG ADO A DIAG G Circuit4 Handler A SCLK DATA DATA L т Filter 5 Т Sensor Е DIAG DIAG SDO Circuit 5 Ζ 1 DATA SDI DATA Filter 6 DIAG Sensor Е Ζ DIAG Circuit6 sso Е DATA DATA Filter 7 SSI serial Sensor Circuit7 DIAG . 17L DIAG interface MSO 1 MS Control Registers þ Î € CRC /CRCEF **4**9 GNDBB GND 813 T - Blockdiagram

Figure 2 Block Diagram ISO1I813T

3 Functional Description

The ISO1I813T is an electrically isolated 8 bit data input interface. This part is used to detect the signal states of eight independent input lines according to IEC61131-2 Type 1/2/3 (e.g. two-wire proximity switches) with a common ground (GNDBB).

3.1 Introduction

The current in the input circuit is determined by the switching element in state "0" and by characteristics of the input stage in state "1".

The octal input device is intended for a configuration comprising two specified external resistors per channel, as shown in the block diagram. As a result the power dissipation within the package is at a minimum.

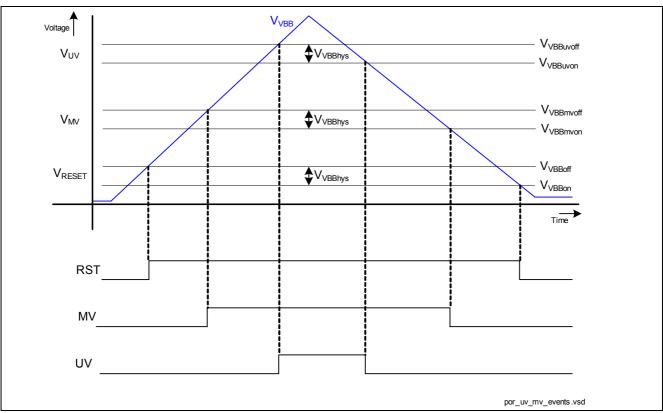
The voltage dependent current through the external resistor R_{EXT} is compensated by a negative differential resistance of the current sink across pins IxH and IxL, therefore input INx behaves like a constant current sink.

The comparator assigns level 1 or 0 to the voltage present at input I. To improve interference protection, the comparator is provided with hysteresis. A status LED is connected in series with the input circuit (R_{EXT} and current sink).

If no LED is used an external resistor of 2 k Ω has to be connected between IxL and GNDBB. The specified switching thresholds may change if the LED is replaced by a resistor.

The LED drive short-circuits the status LED if the comparator detects "0". A constant current sink in parallel with the LED reduces the operating current of the LED, and a voltage limiter ensures that the input circuit remains operational if the LED is interrupted but the switching thresholds may change.

For each channel an adjustable digital filter is provided which samples the comparator signal at a rate configured by programming internal registers. The digital filter is designed to provide averaging characteristics. If the input value remains the same for the selected number of sampling values than, the output changes to the corresponding state.


The μ C compatible interfaces allow a direct connection to the ports of a microcontroller without the need for other components. The diagnostic logic on the chip monitors the internal data transfer as well as the sensor input supply. The information is send via the internal coreless transformer to the pin ERR at the input interface

3.2 Power Supply

The IC contains 2 electrically isolated voltage domains that are independent from each other. The microcontroller interface is supplied via pin VCC, GND and the input stage is supplied via pin VBB, GNDBB. The different voltage domains can be switched on at different time. **Figure 4** shows the Start Up behaviour if both voltage domains are powered by an external power supply. If the VCC and VBB voltage have reached their operating range and the internal data transmission has been started successfully, the IC indicates the end of the Start Up procedure by setting the pin ERR to logic high. In the situation of a supply voltage drop at VBB on the Sense Side - even short - the Sense Chip requires a proper restart and therefore the μ Controller Side control unit needs to react accordingly, especially to guarantee the integrity of the sensor data provided to the filter stage.

Functional Description

3.2.1 Voltage Limits on VBB

Figure 3 Start Up Procedure with external Power Supply

During UVLO, all registers are reset to their reset values as specified in the **Chapter 6.2**. As a result, the flags TE, UV as well as MV are High and the ERR pin is Low (error condition). Immediately after the reset is released, the chip is first configured by "reading" the logic level of the SEL, MS1, MS0 (when available). The IC powers up as a parallel device i.e. the AD0-7 pins are high-impedance until the IC configuration is over.

The supply voltage VBB is monitored during operation by two internal comparators (with typ. 8 μ s blanking time @ 500kHz f_{scantyp}) detecting:

- VBB Undervoltage: If the voltage drops below the UV threshold (see **Table 7**), the UV-bit in the **GLERR** register is set High. The IC operates normally.
- VBB Missing Voltage: If the voltage further drops below the MV threshold, lower than the previous threshold, the MV-bit in the GLERR register is set, the Sense Side of the IC is turned off when reaching the V_{RESET} threshold whereas the Micro-Controller Side remains active.

These 2 thresholds are inactive when the IC operates in Self Power Mode i.e. when the DC_ENA pin is High.

Note: In case DC_ENA ist high the integrated DC/DC driver is active. The driver stage is self-protected in overload condition: the internal switches will be turned off as long as the overcurrent condition is detected and the IC will automatically restart once the overload condition disappears.

Important: Since the UV and MV (as well as the TE and W4S) bits used for generating the ERR signal are preset to High during UVLO, the ERR pin is Low after power up. Therefore the ERR signal requires to be explicitly cleared after power up. At least one read access to the GLERR and INTERR registers is needed to update those status bits and thus release the ERR pin.

3.2.2 External Supply

Figure 4 shows the Start Up behaviour if both voltage domains are powered by an external power supply. If the VCC and VBB voltage have reached their operating range and the internal data transmission has been started successfully, the IC indicates the end of the Start Up procedure by setting the pin ERR to logic high

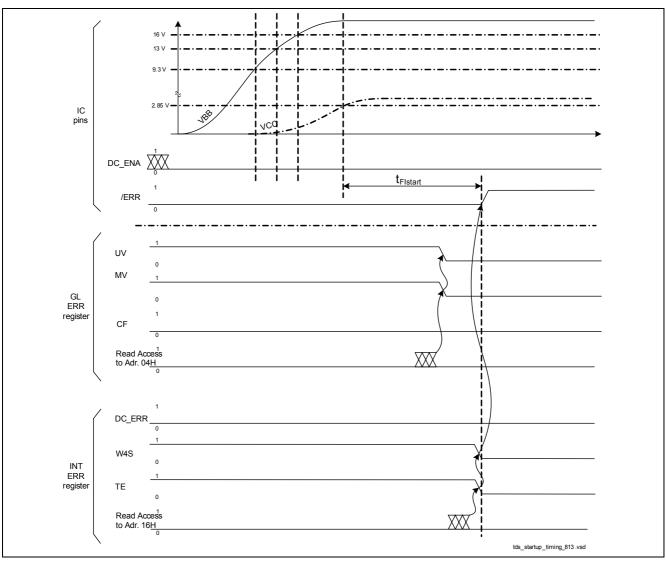


Figure 4 Start Up Procedure with external Power Supply

Functional Description

3.2.3 DC/DC Supply

JuC Supply (5V / 3.3V) VCC PP Output driver VBB SW Clk Temp : 2 SW2 DĊK N1 N2 GNDBB Тr GND VCC uC Supply (GND) DC_ENA uC-Domain Sense-Domain dcdc_typapp.VSD

The IC can as well operate in self powered mode. In this case, the Process Side can be supplied at VBB with an isolated push-pull converter connected to the Micro-controller Side and driven by the pins SW1 and SW2. The internal driver stage at SW1 and SW2 is designed to power up two ISO1I813T (refer to **Table 8**). The DC/DC-Converter is driven by the internal clock. Parameters are calculated with the internal clock = 500 kHz. By setting the DCK Bit in the GLCFG register a prescaler by 2 can be activated. Should the user adjusts another different frequency the transformer has to be adjusted accordingly.

The short-circuit protection uses a temperature sensor located close to the drivers and disables the driver stages when a predefined temperature is reached (**Figure 7**, **Figure 5**). The target value for the switch-off-temperature is 160°C with a hysteresis of < 10°C. That means that the drivers are switched off at a temperature of 160 °C and switched on at a temperature of <=150°C

Functional Description

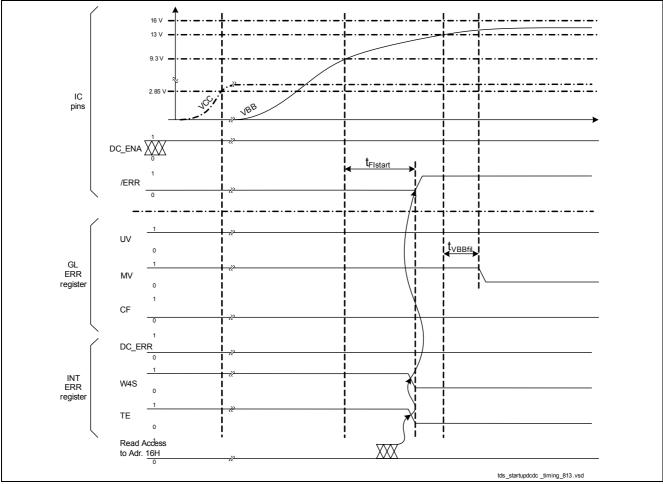


Figure 6 Start Up Procedure with DC/DC Supply

Functional Description

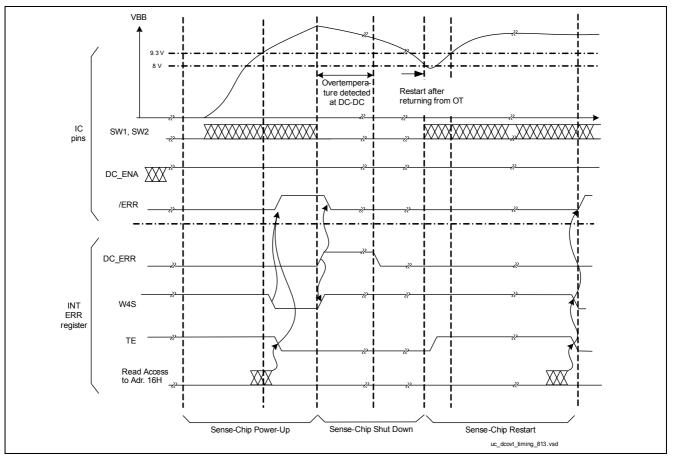
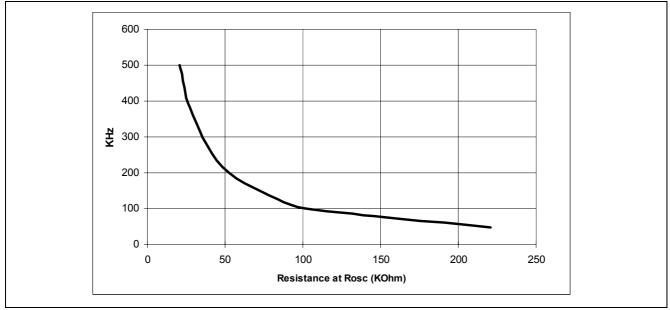



Figure 7 Restart Procedure after VBB drop due to DC/DC Supply overtemperature

3.3 Internal Oscillator

An external resistor has to be connected to Rosc and allows the adjustment of the frequency as shown in Figure 8.

The internal oscillator provides the scan clock for the sampling of the sensor data and diagnostics as well as the internal digital averaging filters. Therefore the filter times as defined in the **Table 11** for the typical frequency of 500 KHz will change accordingly. As an example, it is possible to define filter time longer than 20 ms by reducing the internal oscillator frequency.

Moreover, in the applications where the IC current consumption is critical, it is possible to reduce the internal oscillator frequency by increasing the R_{OSC} (see Figure 9).

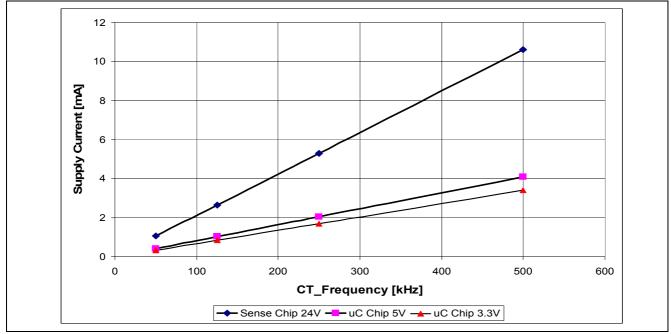


Figure 9 IC Current Consumption in function of the internal frequency

3.4 Sensor Input

3.4.1 Input Type Select

The sensor input structures are shown in **Figure 10**. Due to its active current a V-I-characteristic as shown in **Figure 11** is maintained. This V-I-curve is well within the IEC 61131 standard requirements of Type 1, Type 2 and Type 3 sensors, respectively. The **Figure 12** shows the typical application for sensor of type 2. It is recommended to choose for the external resistors R_{EXT} , R_V , R_{LED} an accuracy of 2 % (< 5% is mandatory) otherwise the V/I-characteristic shown in **Figure 11** cannot be guaranteed.

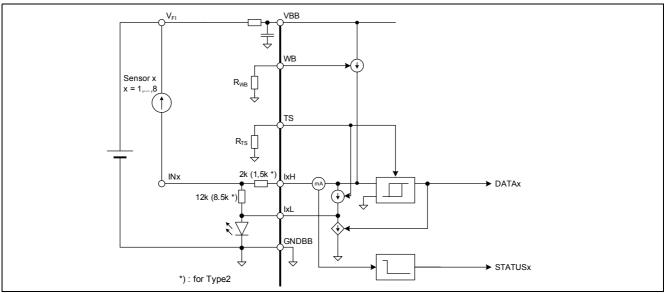


Figure 10 Typical Application for Sensor Input Type 1, 2 and 3

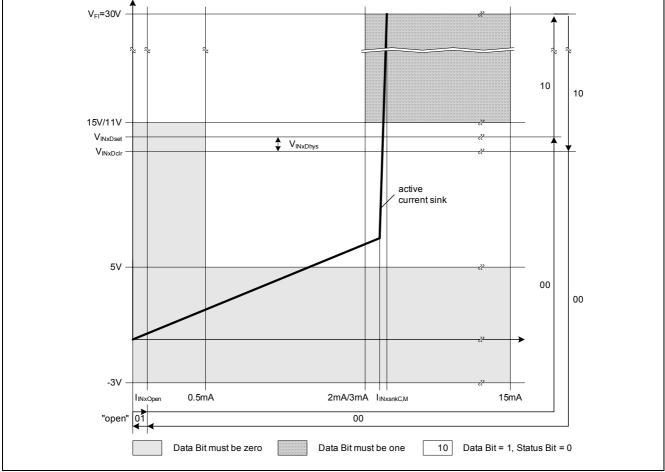


Figure 11 Sensor Input Characteristics

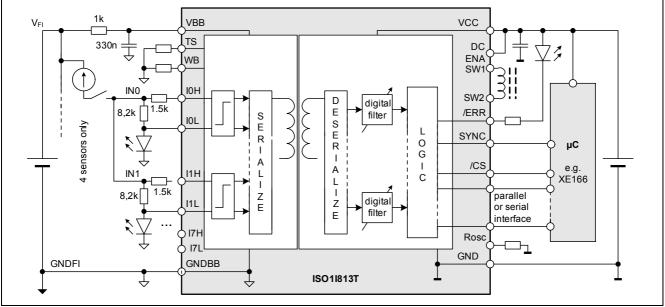


Figure 12 Typical Application for Sensor Type 2

3.4.2 Wire Break Detection

The wire-break current can be adjusted by the R_{WB} -resistor value connected to the pin WB (Figure 13). The minimum wirebreak-current can be choosen only when a LED- or Zener-Diode is connected to the pin IxL with a forward current in the range of few uA in the voltage range below 1 V. In the case of a connected resistor at IxL a great current is flowing across the external resistor Rext and the IxL-resistor (R_{LED}). This part cannot be measured internally and has to be added to the internal current part. In this case the minimum adjustable current is greater by about 150uA (R_{LED} = 2kOhm). The WB bits in the status register have a sticky (latched) property and remains set as long as they are not cleared by a read access and the fault condition is not detected anymore

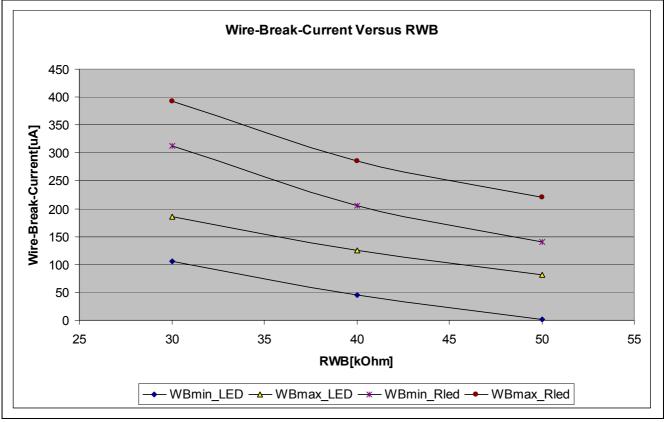


Figure 13 Wire Break Detection for Type 1,3 (typ. @ 25°C)

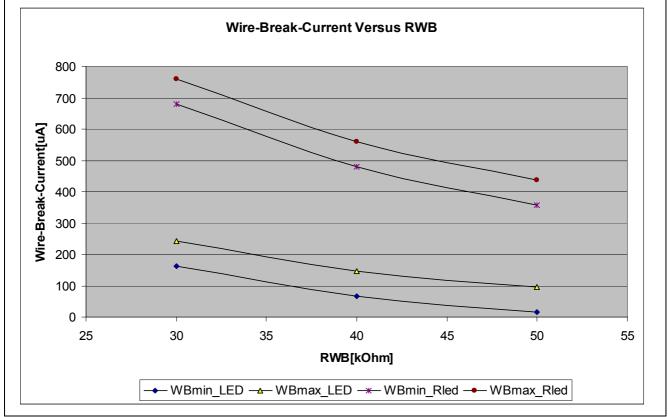


Figure 14 Wire Break Detection for Type 2 (typ. @ 25°C)

In the case of Type 2 two sense inputs are switched in parallel to achieve 2 * 3 mA (Figure 12). In each sense input a mimimum wirebreak current of 60 uA can be measured which means in sum a minimum wirebreak current of 120 uA. It is not recommended to use external resistors at the pins IxL in case of wirebreak measurements. The recommended value would be $R_{LED} = 1.2$ kOhm which has been choosen in order not to produce a large voltage drop between IxL and GNDBB which in turn would limit the voltage drop across the sink. But the low value of R_{LED} would cause a high external current in case of wirebreak-measurements which has to be multiplied by two due to the parallel circuitry of the sense inputs.

3.5 Common Error Output

The input (VBB) undervoltage and missing voltage status which are transmitted via the integrated coreless transformer to the output block and the internal data transmission monitoring information are evaluated in the common error output block, see **Figure 15**. In self-powered mode, an extra information in case of over-current at SW1/2 is evaluated as well.

In case of an internal data transmission error the data and status bits are replaced by the last valid transmission. Moreover, if four consecutive erroneous data transmissions (TE1=1) occur, an internal error signal (TE4=1) is set. The averaging filters are reset and this status is held until four consecutive error-free transmissions (TE1=0) occur. An example timing diagram is shown in **Figure 15**.

This internal error signal is OR-wired with the current VBB undervoltage and missing voltage status. Additionaly in the ISO1I813T, the Collective Diagnostics flag is combined in the ERR. Since the output error signal is low-active, the OR-wired result is negated.

In the Self Powered mode, the UV and MV are masked out. Instead the DC_ERR bit of the **INTERR** is combined with the Transmission Error signal and output at the ERR pin.

The output stage at pin $\overline{\text{ERR}}$ has an open drain functionality with a pull-up resistor. See **Table 13** for the electrical characteristics.

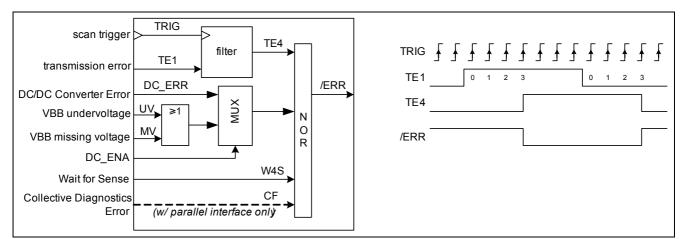


Figure 15 Common Error Output

3.6 Programmable Digital Input Filter

The sensor data and diagnose bits of each input channel can be filtered by a configurable digital input filter. If selected, the filter changes its output according to an averaging rule with a selectable average length. When the sensor state changes without any spikes and noise the change is delayed by the averaging length. Sensor spikes that are shorter than the averaging length are suppressed. **Figure 16** shows the behavior of the filter.

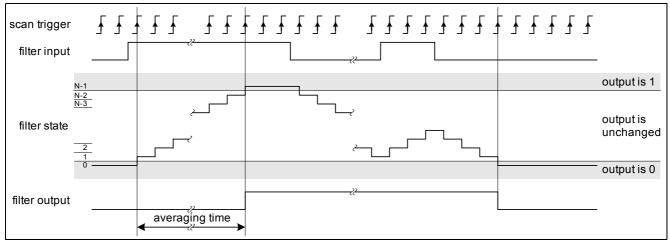
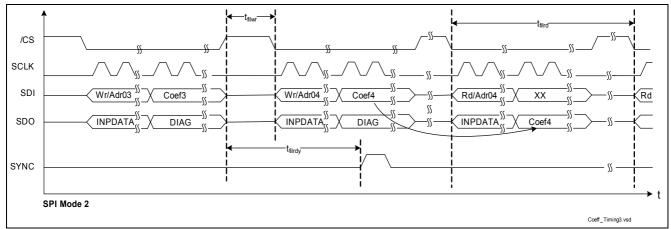
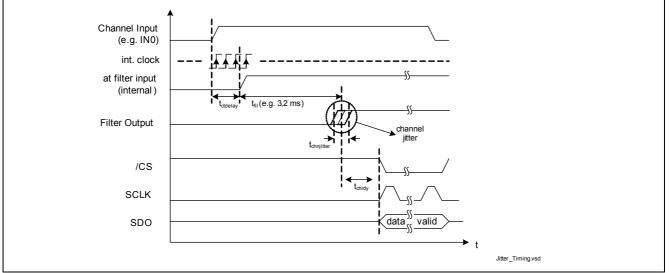


Figure 16 Digital Filter Behavior

The averaging length is selected for each channel individually using the configuration registers **COEFIL0-7**. The programmed filter time apply for both the data and the diagnostics of one channel. See **Table 11** for the different setting options including filter bypass.

In this case, a minimal processing time occurs until the new configuration and the filtered data are valid and can e.g. be frozen with the pin SYNC (described in Figure 17 and Table 17).




Figure 17 Filter Time Programming and Update Timing

Whereas the absolute filter time depends on the internal oscillator frequency accuracy, the maximal jitter per channel of the IC is 1.5 %. The channel jitter defined in the **Figure 18** is due to the sampling error of the sensor data with the internal clock and applies equally for all the channels.

Furthermore, a fixed propagation delay has to be taken into account due to the data transmission over the Coreless Transformer.

3.7 Parallel Interface Mode

The ISO1I813T contains a parallel interface that can be selected by pulling the SEL Pin to logic low state. The interface can be directly controlled by the microcontroller output ports. (Figure 19). The output pins AD7:AD0 are in state "Z" as long as \overline{CS} =1. Otherwise, new sensor data bits or status bits are sampled with the rising edge of \overline{RD} , and driven by the falling edge of \overline{WR} and provided at pins AD7:AD0.

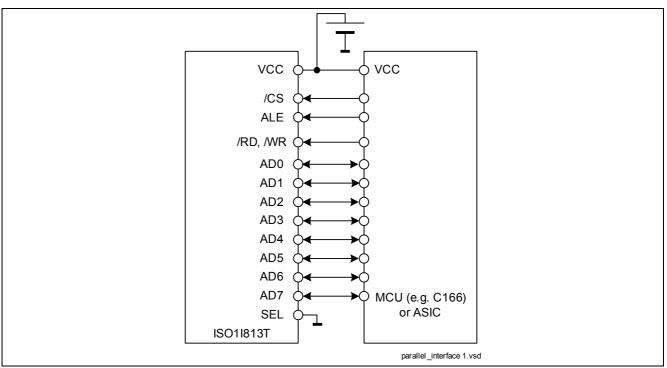
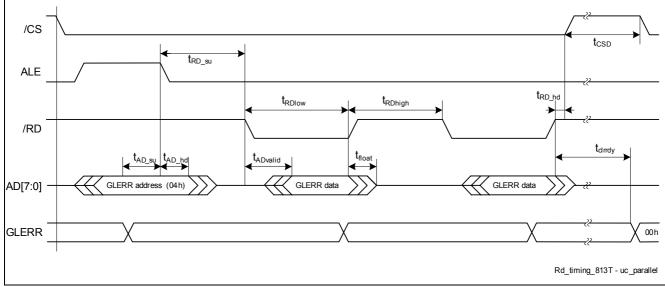
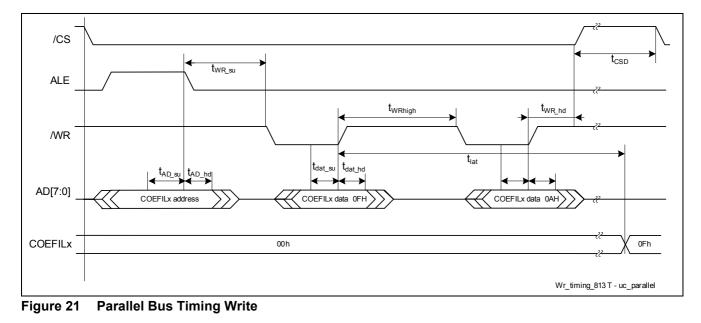



Figure 19 Bus Configuration for Parallel Mode


The timing requirements for the parallel interface are shown in Figure 20, Figure 21 and Table 15.

Functional Description

3.8 Serial Interface Mode

The ISO1I813T contains two serial interfaces that can be activated by pulling the SEL pin to logic High state. The interface can be directly controlled by the microcontroller output ports. The output pins SDO and SSO are in state "Z" as long as \overline{CS} =1. Otherwise, the bits are sampled with the falling edge of \overline{CS} . With every falling edge of SCLK the bits are provided serially to the pin SDO and SSO, respectively. At the same time, the inputs to SDI, SSI are registered into input-FIFO buffers (sampled with the rising edge of SCLK). When all internally sampled bits have been transferred to SDO/SSO, the buffered bits from the inputs SDI/SSI are provided to these pins (daisy-chain support).

-**t**SCLK suinactive /CS active receiv SCLK edge transmi edge Isu Item + tem + tcsн SDI, SSI MSB LSB t_{CS valid} ≯ <tsclk_valid SDO, SSO MSB LSB Serial_Bus_Timing

The timing requirements for the serial interface are shown in Figure 22 and in Table 16.

Several SPI topologies are supported: pure bus topology, daisy-chain and any combinations (Figure 23). Of course independent individual control with dedicated SPI controller interfaces for each slave IC is possible, as well.

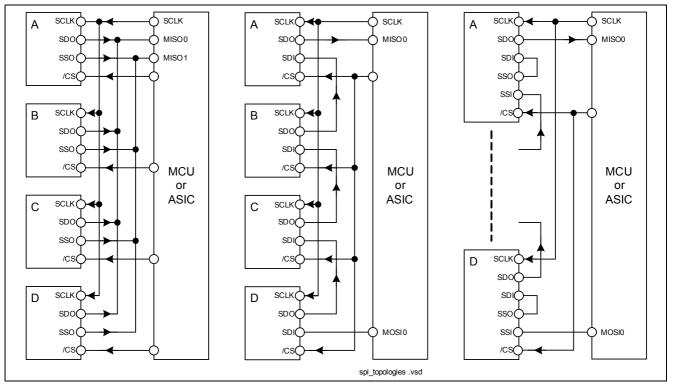


Figure 23 Example SPI Topologies

3.8.1 SPI Modes

3.8.1.1 Switching Serial Modes

All serial modes MS1, MS0 = 11, 01, 10, 00 are switchable during operation but not within a serial transfer frame. No internal registers are affected. Only multiplexers and CRC-engines can be activated or deactivated. Internal FSMs are reset. The user has to run one dummy serial process after switching of serial modes to clear the serial shift registers and reset the internal FSMs. For example: switching from MS1, MS0 = 00 to MS1, MS0 = 11 means the 24 bit serial shift registers and the CRC-engines will be activated. To guarantee proper operation one dummy read sequence has to be processed means "shift in 24 bits with read address, zeros and CRC within a \overline{CS} = low frame" to operate the serial interface in the new mode. A reliable output is not guaranteed for the first serial process. The same is true for changing the serial mode in the reverse direction : from MS1, MS0 = 11 to MS1, MS0 = 00. Here at least one serial access (8 SCLK-cycles) within a \overline{CS} =low frame is necessary.

Be aware that in Mode01 read access the data at SDO/SSO corresponds to the adress which has been written in the frame before. Mode00 and Mode 01 support the daisy-chain application.

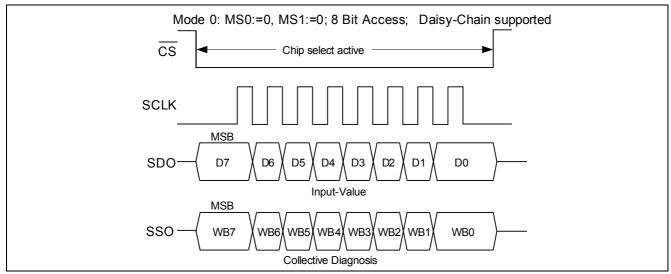


Figure 24 SPI Mode 0

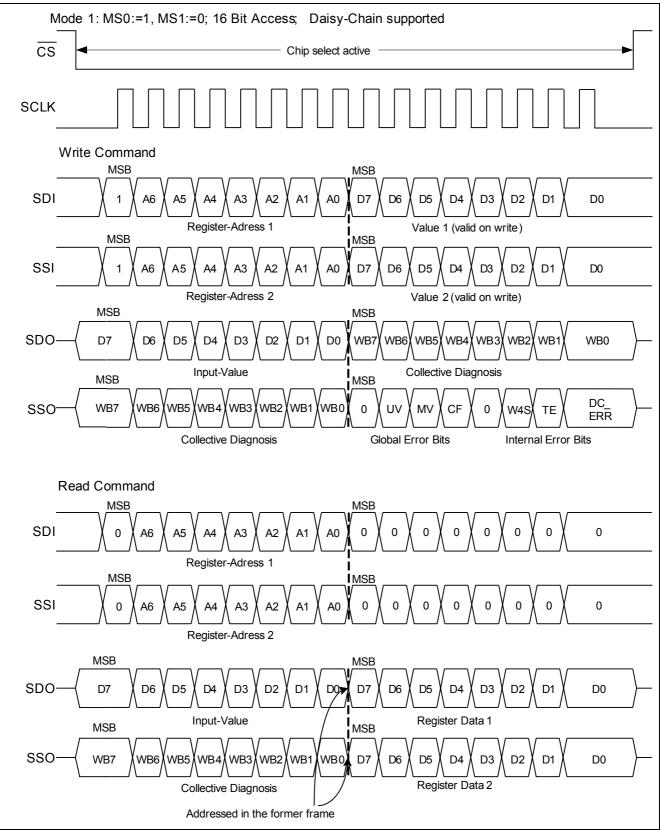


Figure 25 SPI Mode 1

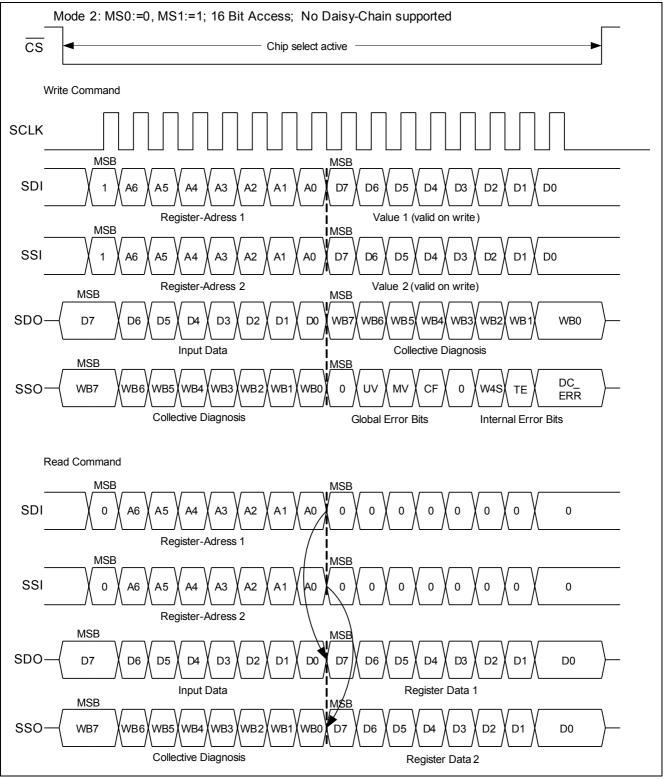


Figure 26 SPI Mode 2

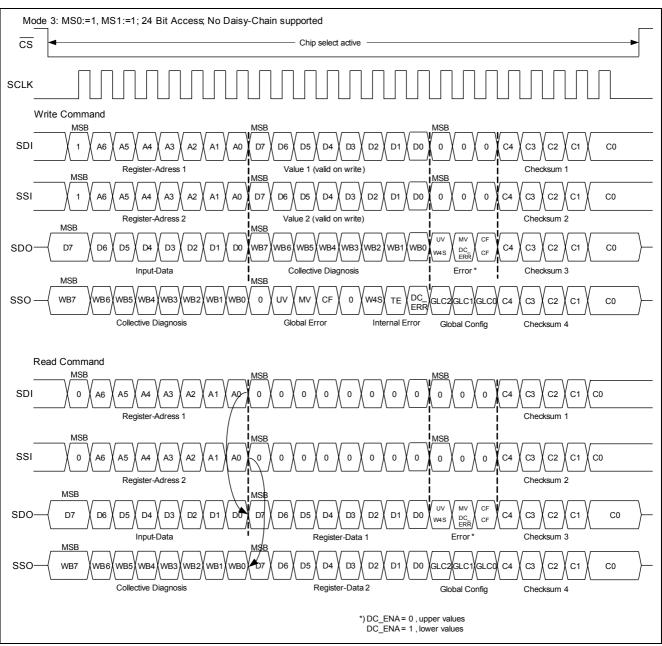
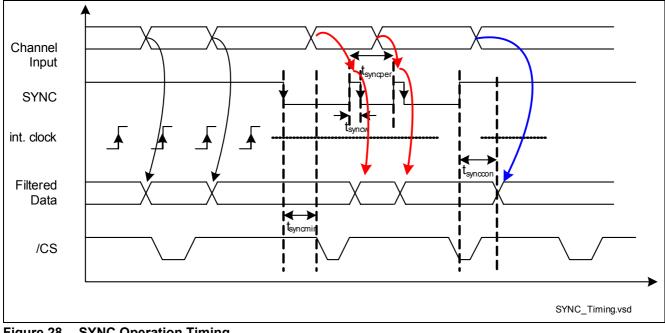


Figure 27 SPI Mode 3

The error values in the SDO-segment depend on the setting of DC_ENA. If DC_ENA is set to 1 the IC is supplied by the integrated DC/DC converter and the error information W4S, DC_ERR, CF is valid. If DC_ENA is set to 0 the error information UV, MV, CF is valid

3.8.2 **Architecture of CRC-Engines**


For writing serial data into the uC-interface chip one serial-SPI-mode (MS1, MS0 = 11) delivers with the pure input data bit stream (write by an uC, 19 bits) also the CRC-signature (5 bits). The total bitstream is fed into the CRCinput engines and processed according to the underlying CRC-algorithm serially.

The CRC is a 5-Bit-checksum and will be calculated with the polynom X5+ X4+ X2+1 and is calculated from Bit [23:5]. The checksum is transfered to Bit [4:0]. After totally processed 24 serially shifted in-bits (including the CRCsignature) the total result of the CRC-algorithm processing has to be zero. In the case of another result different from zero the delivered signature is not consistent with the delivered bit stream. This will be indicated by setting the CRC ERR Pin to low

For reading of registers by a uC a CRC-signature (5 bits) (MS1, MS0 = 11) will be delivered with the pure data bit stream (19 bits) : data output (read by a uC). The read bitstream has to be processed according to the CRCalgorithm serially. After totally processed 19 serially shifted out-bits the CRC-signature has been calculated and delivered to the output pins SDO, SSO.

3.9 SYNC Operation

The filtered data and diagnostics can be synchronized on the falling edge of the SYNC pin or "frozen" by holding SYNC low (see Figure 28 and Table 17).

SYNC Operation Timing Figure 28

Standard Compliance

4 Standard Compliance

The ISO1I813T allows the design of a sensor interface compliant with the standard requirements listed below: System Insulation Characteristics as shown in Table 3,

System Immunity Characteristics as shown in Table 5.

These requirements are valid for an application using the ISO1I813T including external circuitry (as proposed in **Figure 29**), not for the IC alone.

Note: When the IC is not supplied, probing of the sensor input interface is still possible due to the external circuitry, i.e. the 12k resistor and the LED. In addition to the current through the LED a small current I_{IXH} flows through the pins IxH and IxL.

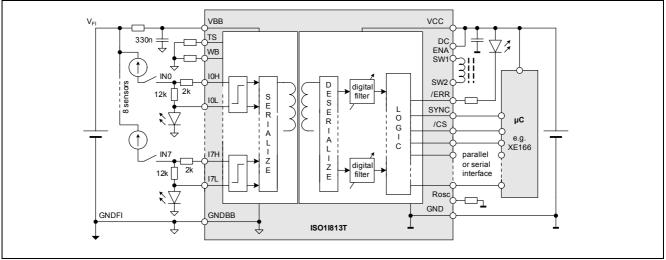
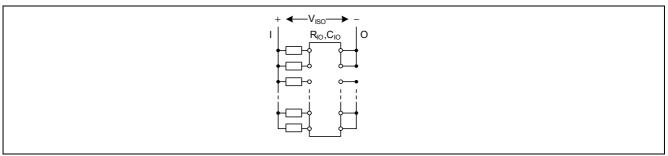



Figure 29 Recommended Application Circuit

Table 2 System Absolute Maximum Ratings

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Field Input Voltage Overvoltage 1300 ms	V _{Flov}	-45		+45	V	
Input Voltage INx	V _{INx}	-45		+45	V	

Standard Compliance

Table 3 System Insulation Characteristics

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Pollution Degree (DIN VDE 0110/1.89, DIN EN 60664-1)			2				
Minimum External Clearance	CLR	6.7			mm		
Minimum External Creepage	CPG	6.2			mm		
Comparative Tracking Index	CTI	550			V		
Maximum Working Insulation Voltage	V _{ISO}	500			V _{AC}	1 min duration ¹⁾	
Approval UL1577						Pending	
Approval CSA						Pending	
Approval EN61131-2						Pending	

1) not subject to production test, verified by characterization

5 Electrical Characteristics

This section comprises:

- Operating Conditions and Power Supply (see Section 5.2)
- Electrical Characteristics Input Side (see Section 5.3)
- Electrical Characteristics Microcontroller Interface (see Section 5.4)

Tolerance values always contain the sum of process-related tolerance values and tolerance-values based on the temperature drift within the specified temperature range.

5.1 Absolute Maximum Ratings

All voltages at pins 25 to 48 are measured with respect to ground GNDBB. All voltages at pins 1 to 24 are measured with respect to GND. The voltage levels are valid if other ratings are not violated. The two voltage domains VCC, GND and VBB, GNDBB are internally electrically isolated.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Value		Unit	Note /
		Min.	Max.		Test Condition
Continuous Voltage at pin VBB	V _{VBB}	-0.3	45	V	Power Dissipation must not exceed max-value
Peak Voltage VBB, Overvoltage 500 ms	V _{VBB}	-0.3	45	V	
Supply Voltage VCC	V _{VCC}	-0.3	6.5	V	
Continuous Voltage at logic pins 1 - 24 (except VCC and GND pins)		-0.3	6.5	V	
Continuous Voltage at pin TS, WB		-0.3	6.5	V	
Junction Temperature	TJ	-40	150	°C	
Storage Temperature	Τ _s	-50	150	°C	
Power Dissipation	P _{tot}		800	mW	
Input Voltage Range	V _{IxH}	-45	45	V	
Input Voltage Range	V _{IxL}	-0.3	5	V	
Error Pin Sink Current (ERR=0)	I _{ERRsink}		5	mA	$V_{ERR} < 0.25 \cdot V_{VCC}$
Error Pin Sink Current (CRCERR=0)	I _{CRCsink}		5	mA	$V_{\text{ERR}} < 0.25 \cdot V_{\text{VCC}}$
DC-DC switch outputs 1/2	SW1/2		20	V	
Electrostatic discharge voltage (Human Body Model) according to JESD22-A114-B	V _{ESD}	-	-	2.5	kV
Electrostatic discharge voltage (Charge Device Model) according to ESD STM5.3.1 - 1999	V _{ESD}	-	-	1.5	kV

Table 4 Absolute Maximum Ratings

5.2 Operating Conditions and Power Supply

For proper operation of the device, absolute maximum rating (**Section 4**) and the parameter ranges in **Table 5** must not be violated. Exceeding the limits of operating condition parameters may result in device malfunction or spec violations. The power supply pins VBB and VCC have the characteristics given in **Table 7**.

Table 5Operating Range

Symbol	Value		Unit	Note /
	Min.	Max.		Test Condition
V _{VCC}	2.85	5.5	V	related to GND
V _{VBB}	9.6	35	V	related to GNDBB
V _{VBBDC}	12	16	V	see Figure 4 for operation points) ¹⁾
T _A	-40	85	°C	
Tj	-40	125	°C	
dV _{ISO} /dt	-25	25	kV/μs	
H _{IM}	30		A/m	IEC61000-4-8
	V_{VCC} V_{VBB} V_{VBBDC} T_A T_J dV_{ISO}/dt	$\begin{tabular}{ c c c c } \hline Min. \\ \hline V_{VCC} & 2.85 \\ \hline V_{VBB} & 9.6 \\ \hline V_{VBBDC} & 12 \\ \hline T_A & -40 \\ \hline T_J & -40 \\ \hline dV_{ISO}/dt & -25 \\ \hline \end{tabular}$	Min. Max. V_{VCC} 2.85 5.5 V_{VBB} 9.6 35 V_{VBBDC} 12 16 T_A -40 85 T_J -40 125 dV_{ISO}/dt -25 25	Min. Max. V_{VCC} 2.85 5.5 V V_{VBB} 9.6 35 V V_{VBBDC} 12 16 V T_A -40 85 °C T_J -40 125 °C dV_{ISO}/dt -25 25 kV/ μ s

1) recommended for operation

Table 6 Thermal Characteristics

Parameter	Symbol	Limit V	alues	Unit	Note / Test Condition
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Max.		
Thermal resistance junction - case top	R _{thJC_Top}		15.0	K/W	measured on top side) ¹⁾
Thermal resistance junction - case bottom	R _{thJC_Bot}		13.8	K/W) ¹⁾
Thermal resistance junction - pin	R _{thJP}		11.8	K/W) ¹⁾
Thermal resistance @ 2 cm ² cooling area ²⁾ (thermal conductance only by radiation and free convection)	R _{th(JA)}		88.6	K/W) ¹⁾

1) not subject to production test, specified by design

Device on 50 mm x 50 mm x 1.5 mm epoxy PCB FR4 with 2 cm² (one layer, 35 µm thick) copper area. PCB is vertical without blow air.

Table 7	Electrical Characteristics of the Power Supply Pins
---------	---

Parameter	Symbol	Symbol Values				Note /
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
VBB UVLO startup threshold	V _{VBBon}			9.6	V	
VBB UVLO shutdown threshold	V _{VBBoff}	8.0			V) ¹⁾
VBB UVLO Hysteresis	V _{VBBhys}		1		V	
VBB missing voltage OFF (MV) threshold	V _{VBBmvoff}			13.9	V	
VBB missing voltage ON (MV) threshold	V _{VBBmvon}	12.1			V	

Table 7 Electrical Characteristics of the Power Supply Pins (conf'd)

Electrical Characteristics

Parameter	Symbol		Values	S	Unit	Note /
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
VBB undervoltage OFF (UV) hreshold	V _{VBBuvoff}			17.0	V	
VBB undervoltage voltage ON (UV) threshold	V _{VBBuvon}	15.0			V	
Glitch filters for VBB missing voltage and undervoltage	T _{VBBfil}		8		μs) ²⁾
Undervoltage Current for VBB	I _{VBBuv}		3.5		mA	V _{VBB} < V _{VBBon}
Quiescent Current VBB	I _{VBBq}		5		mA	$V_{VBB} = 24 \text{ V}, \text{ I}_{INx} = 0,$ VCC = 2.5V
Startup Delay (time between VBBon/VCCon and first data output)	t _{vxxon}		26		μs	Digital Filter bypassed) ^{)2 3)}
VCC UVLO startup threshold	V _{VCCon}			2.85	V	
VCC UVLO shutdown threshold	V _{VCCoff}	2.5			V)4)
VCC UVLO threshold hysteresis	V _{VCChys}		0.1		V))2 5)
Quiescent Current VCC	I _{VCCq}		3.1		mA	$V_{VCC} = 5 V)^{2(5)} V_{VBB} = 0V$
Quiescent Current VCC	I _{VCCq}		2.3		mA	V _{VCC} = 3.3 V V _{VBB} = 0V

1) Note that the specified operation of the IC requires V_{VBB} as given in Table 5

2) defined for f_{scantyp} 500kHz

3) not subject to production test, specified by design

4) Note that the specified operation of the IC requires V_{VCC} as given in Table 5

5) No Push-Pull Converter connected at SW1/2

Table 8 **Self-Powered Supply Operation**

Parameter	Symbol	mbol Values			Unit	Note /	
at $T_j = -40 \dots 125^{\circ}$ C, $V_{bb}=9.6\dots 35$ V, $V_{CC}=2.85\dots 5.5$ V, unless otherwise specified		Min.	Тур.	Max.		Test Condition	
ON Resistance at SW1/2	R _{DSON}			2.3	Ω	140 mA	
Current Rating	I _{SW}			140	mA		
Thermal overload trip temperature	T _{jt}	157		165	°C) ¹⁾	
Thermal hysteresis	ΔT_{jt}		5		K) ¹⁾	

1) not subject to production test, specified by design

5.3 Electrical Characteristics Input Side

The electrical characteristics of the input side (pins 25-48) are given in **Table 9**. Note that some parameters refer to IN0 to IN7 which are nodes of external circuitry (see **Figure 10** or **Figure 29**). Electrical characteristics with respect to these nodes are given for the system including the external circuitry and not for the IC alone. See also **Figure 11** for the different threshold parameters.

Table 9Sensors Inputs

Parameter	Symbol		Value	s	Unit	Note / Test Condition
at T _j = -40 125°C, V _{bb} =9.635V, V _{CC} =2.855.5V, unless otherwise specified		Min.	Тур.	Max.		
Sink Current Limit at Saturation Edge Type 1/3	I _{INxsnkC13}	2.3			mA	V _{VBB} =V _{VBBon} , V _{INx} =6.7V, V _{IxL} =1.2V
Sink Current Limit at Saturation Edge Type 2	I _{INxsnkC2}	3.3			mA	$V_{VBB}=V_{VBBon},$ $V_{INx}=6.7V, V_{IxL}=1.2V$
Sink Current Limit at Maximum Input Voltage Type 1/3	I _{INxsnkM13}			3.4	mA	V _{VBB} =35V, V _{INx} =30V V _{IxL} =2.5V
Sink Current Limit at Maximum Input Voltage Type 2	I _{INxsnkM2}			4.8	mA	V _{VBB} =35V, V _{INx} =30V V _{IxL} =2.5V
LED Supply Current at Maximum Input Voltage, Type 1/3	I _{IxLmax}	2.1		3.1	mA	V _{VBB} =35V, V _{INx} =30V, V _{IxL} =2.5V
LED Supply Current at Maximum Input Voltage, Type 2	I _{IxLmax}	3.1		4.5	mA	V _{VBB} =35V, V _{INx} =30V V _{IxL} =2.5V
LED Supply Current at High Threshold Type 3	I _{IxL1}	1.5		2.5	mA	V _{VBB} =V _{VBBon} , V _{INx} =11V, V _{IxL} =2.5V
LED Supply Current at High Threshold Type 2	I _{IxL2}	2.3		3.6	mA	V _{VBB} =V _{VBBon} , V _{INx} =11V, V _{IxL} =2.5V
LED Supply Current at High Threshold Type 1	I _{IxL3}	1.6		2.6	mA	V _{VBB} =V _{VBBon} , V _{INx} =15V, V _{IxL} =2.5V
LED Voltage recommended	V _{FLED}	1.9		3.0	V) ¹⁾
Sense Voltage Switching Threshold, L \rightarrow H (Type 1)	V _{INxDset(1)}			15		V _{VBB} =24V V _{IxL} =2.5V) ²⁾
Sense Voltage Switching Threshold H→L (Type 1)	V _{INxDclr(1)}	11				V _{VBB} =24V V _{IxL} =2.5V) ²⁾
Hysteresis H⇔L (Type 1)	V _{INxDhys(1)}		1			
Sense Voltage Switching Threshold L→H (Type 2)	V _{INxDset(2)}			11		V _{VBB} =24V V _{IxL} =2.5V) ²⁾
Sense Voltage Switching Threshold H→L (Type 2)	V _{INxDclr(2)}	7				V _{VBB} =24V V _{IxL} =2.5V) ²⁾
Hysteresis H⇔L (Type 2)	V _{INxDhys(2)}		0.65			
Sense Voltage Switching Threshold L→H (Type 3)	V _{INxDset(3)}			11		V _{VBB} =24V V _{IxL} =2.5V) ²⁾
Sense Voltage Switching Threshold $H \rightarrow L$ (Type 3)	V _{INxDclr(3)}	7				V _{VBB} =24V V _{IxL} =2.5V) ²⁾

Table 9Sensors Inputs (cont'd)

Parameter	Symbol	I Values			Unit	Note /
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots 35V$, $V_{CC}=2.85\dots 5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
Hysteresis H⇔L (Type 3)	V _{INxDhys(3)}		0.7			
Input Sink Current when V_{VBB} =0	I _{IxHq}		300		μA	V _{VBB} =0V V _{IxH} =30V , IxI = open

1) not subject to production test, specified by design

2) clamped to 2.5V if "logic 1", internally limited if logic "0"

Table 10Setting at the Configuration Pins (TS, WB)

Parameter	Symbol Values				Unit	Note /
at T_j = -40 125°C, V_{bb} =9.635V, V _{CC} =2.855.5V, unless otherwise specified		Min.	Тур.	Max.		Test Condition
TS Pull-Down Resistance for Type 1 Selection	R _{TSpd1}		33		Ω) ¹⁾
TS Pull-Down Resistance for Type 2 Selection	R _{TSpd2}		33		kΩ	2) 1)
TS Pull-Down Resistance for Type 3 Selection	R _{TSpd3}		330		kΩ) ¹⁾
WB pin source current	I _{WBsource}		12.5		μA	$R_{WB} = 40 k\Omega$
WB pin detection current	I _{WB}		80		μA	$R_{WB} = 40 k\Omega$
Wirebreak detection blanking time	t_{WB_blank}		1		μs) ^{3) 4)}
Type selection blanking time	t _{TS_blank}		2		μs) ^{3) 4)}
Max. WB Pin Load Capacitance	C _{WBmax}			5	pF) ¹⁾
Max. TS Pin Load Capacitance	C _{TSmax}			20	pF) ¹⁾

1) required for operation

2) Only 4 channels can be used for this case.

3) not subject to production test, specified by design

4) defined for $f_{scantyp}$ 500kHz

5.4 Electrical Characteristics Microcontroller Interface

For the Parallel Mode see Table 11, Table 12, Table 14 and Table 15, For the Serial Mode see Table 11, Table 12, Table 14 and Table 16.

Timing characteristics refer to C_L < 50 pF and R_L > 10 k\Omega.

Table 11	Sensor Scanning and Averaging	1)
----------	-------------------------------	----

Parameter	Symbol		Values		Unit	Note / Test Condition
at $T_j = -40 \dots 125^{\circ}$ C, $V_{bb}=9.6\dots35$ V, $V_{CC}=2.85\dots5.5$ V, unless otherwise specified		Min.	Тур.	Max.		
Typical Scan Frequency	f _{scantyp}	440		510	kHz	R_{OSC} = 22.1 k Ω without tolerance
Scan Frequency Range	f _{scanrge}	50		500	kHz) ²⁾ refer to Figure 8
Input Scan Propagation Delay	t _{ctdelay}		8		μs) ¹⁾ applies equally to all channels
Filter Bypass delay	t _{bypass}		2		μs) ¹⁾
Minimal Filter Output valid time (until Readout i.e. CS falling edge)	t _{csrdy}		1.2		μs	including maximum channel jitter) ¹⁾
Channel Jitter ³⁾	t _{chnjitter}	0		2 µs	μs	for t_{FILT00} and t_{FILT01}
Channel Jitter	t _{chnjitter}	0		1.5	%	for t_{FILT02} to t_{FILT07}) ¹⁾
Digital Filter Monitoring Time	t _{FILT00}		0.050		ms	FT=00 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT01}		0.100		ms	FT=01 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT02}		0.400		ms	FT=02 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT03}		0.800		ms	FT=03 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT04}		1.600		ms	FT=04 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT05}		3.200		ms	FT=05 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT06}		10.000		ms	FT=06 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILT07}		20.000		ms	FT=07 _H) ¹⁾
Digital Filter Monitoring Time	t _{FILToff}		2.0		μs	FT=08 _H 0F _H) ¹⁾

1) valid for $f_{scantyp} = 500 \text{kHz}$

2) not subject to production test, specified by design

3) the channel jitter is defined in Figure 18

Table 12	Setting at the Configuration Pin (Rosc) see also Figure 8
----------	---

Parameter	Symbol Values			Unit	Note /	
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
Rosc Pin Source Current	I _{Roscsrc}		50		μA	R _{osc} = 22.1 kΩ
Rosc Resistance to GND	R _{Rosc}	18.4	22.1	221	kΩ	E96 resistor
Rosc Pin Regulated Voltage	V _{Roscreg}		1.2		V	
Max. Rosc Pin Load Capacitance	C _{Roscmax}			5	pF) ¹⁾

1) required for operation

Table 13 Error Pins (ERR, CRCERR)

Parameter	Symbol		Value	Unit	Note /	
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
Error Pin Pull-Up Resistance (ERR=1)	R _{ERRpu}		50		kΩ	
Maximum Switching Frequency (ERR, CRCERR)	f _{sw}	10		500	kHz) ¹⁾
Error Pin low voltage	V _{ERROL}			$0.25 \cdot V_{VCC}$	V	I _{ERROL} = 5mA

1) not subject to production test, specified by design

Table 14 Logical Pins (RD, WR, ALE, MS0/1, CS, AD7:AD0, SCLK, SDO, SSO, SDI, SSI, SEL)

Parameter	Symbol		Values	Unit	Note / Test Condition	
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min. Typ.		Max.		
Input Voltage High Level	V _{IH}	0.7·V _{VCC}		V _{VCC} +0.3	V	
Input Voltage Low Level	V _{IL}	-0.3		0.3·V _{VCC}	V	
Input Voltage Hysteresis	V _{lhys}		100		mV	
Output Voltage High Level	V _{OH}	$0.75 \cdot V_{VCC}$		1·V _{VCC}	V	I _{OH} = 5mA
Output Voltage Low Level	V _{OL}	0		0.25·V _{VCC}	V	I _{OL} = 5mA

Table 15Parallel Interface

Parameter	Symbol		Value	Unit	Note /		
at T_j = -40 125°C, V_{bb} =9.635V, V_{CC} =2.855.5V, unless otherwise specified		Min.	Тур.	Max.		Test Condition	
Input Pull Up Resistance (RD, WR, CS)	R _{PU}		50		kΩ		
Input Pull Down Resistance (ALE)	R _{PD}		50		kΩ		
Read Request Frequency	f _{RD}	0.06		9	MHz		
Read Request Period (1/f _{RD})	t _{RD}	110		15000	ns		
$\overline{\text{CS}}$ Disable time (minimum $\overline{\text{CS}}$ high time between two accesses)	t _{CSD}	7			μs		
Valid AD0-7 Output	t _{ADout}			55 55	ns	VCC = 3.3V VCC = 5.0V	
AD0-7 setup time related to \overline{WR}	t _{dat_su}		25		ns		
AD0-7 hold time related to WR	t _{dat_hd}		25		ns		
RD setup time	t _{RD_su}	55			ns		
WR setup time	t _{WR_su}	55			ns		
RD Low duration	t _{RDlow}	55			ns	VCC = 3.3V VCC = 5.0V	

Table 15Parallel Interface (cont'd)

Parameter	Symbol		Value	S	Unit	Note /
at $T_j = -40 \dots 125^{\circ}C$, $V_{bb}=9.6\dots 35V$, $V_{CC}=2.85\dots 5.5V$, unless otherwise specified		Min.	Тур.	Max.		Test Condition
WR Low duration	t _{WRlow}	55			ns	VCC = 3.3V VCC = 5.0V
RD hold time	t _{RD_hd}	0	20		ns	
WR hold time	t _{WR_hd}	0	20		ns	
RD Pad to DIAG, GLERR and INTERR Registers Update (Bits Clearing)	t _{clrrdy}	4		6.2	μs	
AD0-7 Output disable time	t _{float}		30		ns	VCC = 5.0V
AD0-7 Data bus setup time	t _{AD_su}	40			ns	
AD0-7 Data bus hold time	t _{AD_hd}	50			ns	
WR latency time	tlat	600		4800	ns	

Table 16Serial Interface

Parameter	Symbol		Value	s	Unit	Note / Test Condition
at $T_j = -25 \dots 125^{\circ}C$, $V_{bb}=9.6\dots35V$, $V_{CC}=2.85\dots5.5V$, unless otherwise specified		Min.	Тур.	Max.		
Input Pull Up Resistance (CS)	R _{PU}		50		kΩ	
Input Pull Down Resistance (SCLK, SDI)	R _{PD}		50		kΩ	
Serial Clock Frequency	f _{SCLK}			9 10	MHz	VCC = 3.3V VCC = 5.0V
Serial Clock Period (1/f _{SCLK})	t _{SCLK}	110 100			ns	VCC = 3.3V VCC = 5.0V
Serial Clock High Period	t _{SCLKH}	55 50			ns	VCC = 3.3V VCC = 5.0V
Serial Clock Low Period	t _{SCLKL}	55 50			ns	VCC = 3.3V VCC = 5.0V
Minimum \overline{CS} Hold time (rising edge of SCLK to rising edge of \overline{CS})	t _{CSH}	40			ns	
Minimum \overline{CS} Disable time (\overline{CS} high time between two accesses)	t _{CSD}	4.8			μs) ¹⁾
Minimum Data setup time (required time SDI to rising edge of SCLK)	t _{su}	5			ns	
Minimum Data hold time (rising edge of SCLK to SDI)	t _{HD}	15			ns	
Minimum valid time CS falling edge to output SDO/SSO	t_{CS_valid}	50			ns	
CS falling edge to first rising SCLK edge	t _{SCLK_su}	80			ns	

Table 16 Serial Interface (cont'd)

Parameter	Symbol	Values			Unit	Note /	
at T _j = -25 125°C, V _{bb} =9.635V, V _{CC} =2.855.5V, unless otherwise specified		Min.	Тур.	Max.		Test Condition	
Minimum valid time SCLK falling edge to output SDO/SSO	$t_{\text{SCLK}_\text{valid}}$			80 70	ns	VCC = 3.3V VCC = 5.0V	
Minimum SDO/SSO Output disable time	t _{float}			50 65	ns	VCC = 3.3V VCC = 5.0V	
New serial mode activation time (MS0/MS1 change to earliest interface access)	t _{MS_rdy}		4		μs	no μ Controller access allowed during the change) ^{1) 2)}	

1) valid for $f_{scantyp} = 500 \text{kHz}$

2) not subject to production test, specified by design

Table 17 Sync and Coefficient Update Timing

Parameter	Symbol		Values	S	Unit	Note / Test Condition
at T_j = -40 125°C, V_{bb} =9.635V, V_{CC} =2.855.5V, unless otherwise specified		Min.	Тур.	Max.		
Minimum time interval for µC- Read-Access after falling edge of SYNC-signal	t _{syncmin}		500		ns	
Minimum time interval for switching from sync mode into the continuous mode	t _{synccon}	3			μs	
Minimum width of SYNC-signal	t _{sync}	200			ns	
SYNC-period	t _{syncper}	500			ns	
Minimum time interval between 2 write cycles for filter time programming	t _{filwr}	4			μs) ¹⁾
Minimum time interval between a write cycle and a read back cycle for filter time programming	t _{filrr}	4			μs) ¹⁾
Minimum time interval between a filter time write cycle and updated filter data freeze	t _{filrdy}	4			μs) ¹⁾

1) valid for $f_{scantyp} = 500 \text{kHz}$

6 Registers of Microcontroller-Interface-Chip

This chapter describes the μ Controller Chip registers.

Table 6-1	Register Bit Type Definition

Туре	Symbol	Description
Read	r	The bit can be read
Read only, updated by hardware	h	The bit is updated by the device itself (for instance: sticky bit)
Write	w	The bit can be written

6.1 µController Chip Registers Overview

The Table 6-2 gives an overview of the μ Controller Chip registers and their address.

Short Name	Description	Access Rights ¹⁾	Address A6-A0, R/W
DIAG	Collective Diagnostics Register (Wire-Break Detection)	rh	00 _H
INPDATA	Input Data Register (Input Channel Data)	r	02 _H
GLERR	Global Error Register	rh	04 _H
COEFIL0 (COEFIL0-7)	Filter Time for the Data and the Diagnostics of Channel 0	rw	06 _H , 86 _H
COEFIL1	Filter Time for the Data and the Diagnostics of Channel 1	rw	08 _H , 88 _H
COEFIL2	Filter Time for the Data and the Diagnostics of Channel 2	rw	0A _H , 8A _H
COEFIL3	Filter Time for the Data and the Diagnostics of Channel 3	rw	0C _H , 8C _H
COEFIL4	Filter Time for the Data and the Diagnostics of Channel 4	rw	0E _H , 8E _H
COEFIL5	Filter Time for the Data and the Diagnostics of Channel 5	rw	10 _H , 90 _H
COEFIL6	Filter Time for the Data and the Diagnostics of Channel 6	rw	12 _H , 92 _H
COEFIL7	Filter Time for the Data and the Diagnostics of Channel 7	rw	14 _H , 94 _H
INTERR	Internal Error Register	rh	16 _H
GLCFG	Global Configuration Register	rw	1C _H
	Reserved	n.a.	other

Table 6-2 Registers Summary

1) r=read-only, rw=read-write (timing restrictions apply), rh=read update by hardware

6.2 **Presentation of the Registers**

The μ Controller side chip provides several 8-bit registers which can be accessed by the μ Controller over the serial or parallel interface. Since those registers are located in the chip internal clock domain, the access is controlled by an internal arbiter processing the read / write requests as well as the synchronization requirements especially to freeze the internal registers when the isochronous mode is used (SYNC pin).

Some timing requirements apply to guarantee the data consistency provided to the µController (see Electrical Characterisitcs).

6.2.1 Sensor Registers

The sensor data and status (Wire-Break) detected at the channel inputs IxH/L by the sensor side chip are available in the **INPDATA** and **DIAG** registers respectively. The bits of the **DIAG** register have a sticky property i.e.once a wire-break condition has been detected (after the filter time), the respective bits remain set. A read access resets the sticky bits under the condition, that no wirebreak is detected anymore. In the serial modes, both registers are per default driven out at the SPO/SSO outputs.

6.2.2 Status Registers

The **GLERR** and **INTERR** registers contains the status of the IC. **GLERR** monitors the application relevant parameters: undervoltage (UV), missing voltage (MV) and collective fault (CF) whereas **INTERR** indicates the status of internal signals important for the proper operation of the IC: wait for sense chip (W4S), transmission error (TE) and DC-DC error (DC_ERR) in case of self powered mode. Those registers can be read over the serial or parallel interface especially to identify the fault causing the error pin (ERR) to be pulled down. There are different options to read those registers: either through direct addressing (e.g. parallel mode) or through the telegram mode when the serial interface is selected where the bits are shifted out during the transaction.

The bits of the **GLERR** and **INTERR** registers have a sticky property and remains set as long as they are not cleared by a read access and the fault condition is not detected anymore. The **Table 6-3** presents which bits are cleared depending on the serial mode and the SPI channel. In the case of the parallel interface, the bits cleared are the ones whose address is contained in the internal ALE register. Only the bits having been read can be cleared. Since the bits are frozen when a read access is detected, it is guaranted that only these bits read over the serial or parallel interface can be cleared: if the status of the bits changes during the transaction, they will not be cleared.

	Mode 0	Mode 1	ode 1			Mode 3	Mode 3		
Read / Write	Read	Read	Write	Read	Write	Read	Write		
SPI channel-0	n.a.	RDREG ¹⁾	DIAG	RDREG ¹⁾	DIAG	RDREG ¹⁾ UV, MV, W4S, DC_ERR) ²⁾	DIAG UV, MV, W4S, DC_ERR) ²⁾		
SPI channel-1	DIAG	DIAG RDREG ¹⁾	DIAG UV, MV, W4S, TE, DC_ERR	DIAG RDREG ¹⁾	DIAG UV, MV, W4S, TE, DC_ERR	DIAG RDREG ¹⁾	DIAG UV, MV, W4S, TE, DC_ERR		

 Table 6-3
 Clear of the Sticky Bits by Serial Interface

1) The bits of register which is being read (Direct addressing)

2) depends on setting of DC_ENA

6.2.3 Configuration Registers

The filter times of each channel can be programmed with the **COEFIL0-7** registers. Since the write access requires some time to update the internal registers, specific timing requirements apply especially between 2 successive programming operations. The **COEFIL0-7** registers define as well if the wire break detection should be masked or not in the **DIAG** register.

Only one of the COEFILx registers can be written at the same time (in serial mode only one SPI channel can be used). It is possible to program a filter time and simultaneously to read out another register e.g. another channel filter time.

Furthermore, the behavior of the IC can be customized with the GLCFG register:

- The ratio of the switching frequency of the DC-DC ouput stage over the internal clock frequency set at the CLKADJ pin can be changed from 1:1 (default) to 2:1.
- A soft reset can be generated to clear the filter stages and reinitialize the data transmission between Sense side and µController side chips.
- The automatical clearing of the **DIAG** when the register is read without direct addressing can be disabled.

6.3 µController Registers Description

6.3.1 Collective Diagnostics Register

This register contains the filtered values of the Wire-Break detection of the channels 0 to 7.

This register can be read by the μ Controller. The WB[x] are set with the occurence of a wire break at input line x and can only be cleared by a read operation of this register if the wire break is not detected anymore (sticky bits). As soon as one of those bits is set, the CF-bit of the **GLERR** is set as well. The **Chapter 6.2.2** explains the way the sticky bits are cleared.

DIAG

Collective Diagnostics Register

						(4	Addres	s : 00 _H)
7	6	5	4	3	2	1	0	
WB7	WB6	WB5	WB4	WB3	WB2	WB1	WB0	
			r	h				

Field	Bits	Туре	Description
WB[x]	7-0	rh	Channel Wire-Break Detected
			This bit indicates if a Wire-Break has been detected at the channel x.
			0 _B No wire-break signal detected at channel x.
			1 _B A wire-break condition has been detected at channel x.

6.3.2 Input Channel Data Register

This register contains the filtered values of the input data detected at the channels 0 to 7. This register can be read by the μ Controller.

When the parallel interface is selected, the default address contained in the internal ALE register is the address of this register.

INPDATA Input Data Register

		(4	Address	: 02 _H)
3	2	1	0	

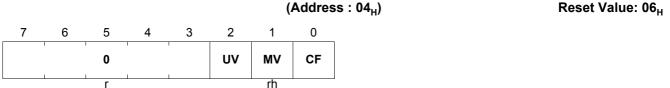
Reset Value: 00_H

Reset Value: 00_H

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0
L	<u> </u>		r	h			<u> </u>

Field	Bits	Туре	Description
D[x]	7-0	rh	Input Channel Data
			This bit represents the input data detected at the pins IxH of the channel x depending on the sensor type selected.
			0 _B Input Data below the input threshold.
			1 _B Input Data above the input threshold.

6.3.3 Global Error Register


This register contains the status of the IC parameters monitored during operation.

This register can only be read by the μ Controller. The CF-bit is the OR-combination of all the bits of the **DIAG** register. The bits of this register are sticky and can only be cleared when the bits are read out and the faults are not detected anymore (refer to **Chapter 6.2.2** for more details).

The UV and MV bits are reset to 1 when the VBB voltage is below the UVLO threshold or during transmission error between the sensor side and μ Controller side. The bits of the **GLERR** register are used in the generation of the signal of the error pin (ERR) and shifted out in some of the serial modes when the SPI interface is selected.

GLERR

Global Error Register

Field	Bits	Туре	Description
CF	0	rh	$\begin{array}{llllllllllllllllllllllllllllllllllll$
MV	1	rh	VBB Missing VoltageThis bit indicates if a missing voltage condition has been detected at the VBB pin. 0_B No missing voltage detected at VBB. 1_B A missing voltage condition has been detected at VBB.
UV	2	rh	VBB Under VoltageThis bit indicates if an undervoltage condition has been detected at the VBB pin. 0_B No undervoltage detected at VBB. 1_B An undervoltage has been detected at VBB.
0	[7:3]	r	Reserved returns 0 if read.

6.3.4 Filter Time of Channel 0-7 Register

This register defines the filter time for both the data and diagnostics for each channel IN0-7. It configures as well if the wire-break bit must be masked in the **DIAG** register.

This register can be modified and read by the $\mu Controller.$.

COEFIL0-7

Channel 0-7 Filter Time Register

(Address : 06_H - 14_H for read access, 86_H - 94_H for write access_.) Reset Value: 1F_H

7	6	5	4	3	2	1	0
0	0	0	MWB		F	T	
-	r		rw		n	W	

Field	Bits	Туре	Description
FT	[3:0]	rw	Filter Time This bit field configures the filter time for averaging the Data and the Wire-Break signals detected at channels IN0-7. 00_{H} 50 µs 01_{H} 100 µs 02_{H} 400 µs 03_{H} 800 µs 04_{H} 1,6 ms 05_{H} 3,2 ms 06_{H} 10 ms 07_{H} 20 ms 08_{H} - 0F _H bypassed (default)
MWB	4	rw	Mask Wire-Break DetectionThis bit masks the filtered signal of the Wire-Break detection.0BThe wire-break signal is masked and is not visible in the DIAG register.1BThe wire-break signal is not masked and appears in the DIAG register.(default).
0	[7:5]	r	Reserved returns 0 if read; should be written with 0.

6.3.5 Internal Error Register

This register contains the status of the internal errors monitored for safe IC operation. The bits are sticky and remain set once the fault condition is detected until a read operation occurs and the faults are resolved. The bits of the **INTERR** register are used in the generation of the error pin (ERR) and shifted out in some of the serial modes when the SPI interface is selected. On power up (UVLO), the bits W4S and TE are preset to High and will have to be cleared by a read access during the startup phase.

INTERR IC Status Register

						(Addres
7	6	5	4	3	2	1	0
		0			W4S	TE	DC_ ERR
	Į	r	1	+	-	rh	ļ

Field	Bits	Туре	Description
DC_ERR	0	rh	$\begin{array}{llllllllllllllllllllllllllllllllllll$
TE	1	rh	Transmission ErrorThis bit indicates if a transmission error has been detected over the CorelessTransformer between the Sense side chip and the μ Controller side chip. 0_B No transmission error. 1_B Transmission error.
W4S	2	rh	 Wait for Sense Chip This bit indicates the Sense side chip is correctly supplied and ready for transmission. 0_B Sense Side is ready. 1_B Sense Side is not ready because of insufficient supply or long transmission error.
00000	[7:3]	r	Reserved returns 0 if read.

6.3.6 Global Configuration Register

This register contains configuration parameters for the sensor type selection as well as the DC-DC driver.

GLCFG

Global Configuration Register

		-	_				(Addre	ss : 1C _H)	Reset Va
7	6	5	4	3	2	1	0		
	0		DIAG ACLR	SW_R ST	DCK		0		
	r		rw	rw	rw		r	1	
Field		Bits	Tvr	pe Des	crintio	n			

Field	Bits	Туре	Description
00	1:0	rw	Reserved
			returns 0 if read; should be written with 0.
DCK	2	rw	DC-DC Driver Switching Frequency Ratio
			This bit indicates the ratio between the sampling clock frequency set at Rosc and
			the switching frequency of the DC-DC driver (pins SW1/2).
			$0_{\rm B}$ DC-DC switching frequency is equal to the sampling frequency (1:1)
			(default).
			1_{B} DC-DC switching frequency is half to the sampling frequency (2:1).
SW_RST	3	rw	Soft-Reset for the Filtering Stage
			This bit triggers the reset of the Filter registers
			0 _B No Reset
			1 _B Reset is generated for the Filter stage
DIAG_ACLR	4	rw	Diagnostics Automatical Clear
			This bit selects if the DIAG register is automatically cleared after any access to
			the DIAG register (especially for the second SPI channel at the SSO pin). The
			diagnostics remain in both case sticky.
			0 _B Automatical clear after any access to the DIAG register (default)
			1 _B Automatical clear disabled
000	[7:5]	r	Reserved
			returns 0 if read; should be written with 0.

ISO1I811T

Package Outline

7 Package Outline

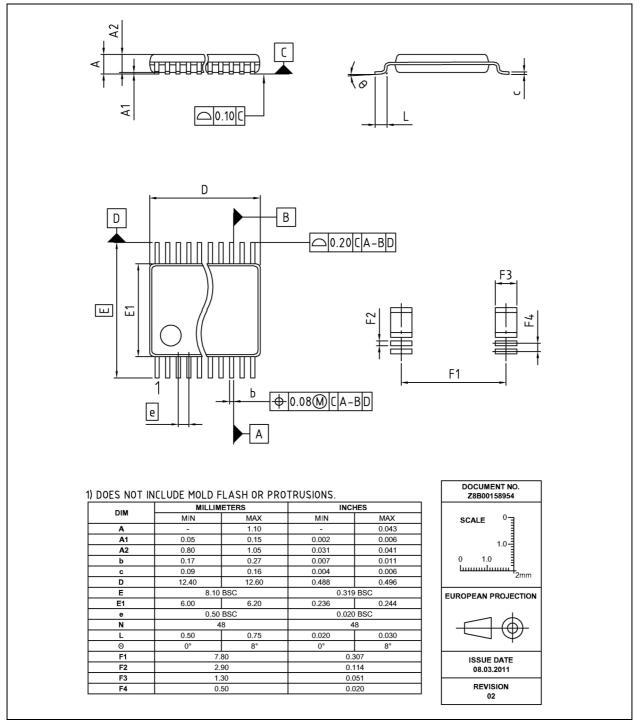


Figure 7-1 Package Outline TSSOP-48 (tie bar not drawn in outline)

Notes

- 1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.
- 2. Dimensions in mm.

www.infineon.com

Published by Infineon Technologies AG